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Abstract
Thermal power plants use fossil fuels or nuclear material to generate most of the world’s electricity.
On hot days, when electricity demand peaks, the ambient air and water used to cool these plants
can become too warm, forcing operators to curtail electricity output. Using all available observed
daily-scale plant outage data, we estimate the observed dependence of thermal plant curtailment
on temperature and runoff and use this relationship to quantify curtailments due to global
warming. Climate change to date has increased average thermal power plant curtailment in
nuclear, coal, oil, and natural gas fired plants by 0.75–1 percentage points; with each degree Celsius
of additional warming, we project curtailment to increase by 0.8–1.2 percentage points during
peak demand, requiring an additional 18–27 GW of capacity, or 40–60 additional average-sized
power plants, to offset this global power loss. Relative to policy scenarios with global transitions to
renewable portfolios or that allow aging plants to retire, thermal power generation is a systemically
disadvantaged means of electricity production in a warming world. Our results point to the crucial
need for additional operational data across a diversity of thermal power plants to better constrain
the risks warming poses to our electricity supply.

1. Introduction

Humanitymust urgently convert energy systems away
from fossil fuels to reduce greenhouse gas emissions
[1–3]. Nonetheless, the majority of global electricity
is still produced by combusting coal, natural gas, and
oil, or generated using nuclear fuel [1]. In the U.S. in
2018, for example, 83% of electricity was generated
using thermal technologies (primarily natural gas,
coal, andnuclear) [4]. Furthermore, substantial num-
bers of new fossil-fuel electricity generating facilities
are planned or under construction in many rapidly
growing nations [5]. This thermal generating infra-
structure will likely exist for decades [6, 7], driving
additional climate change, while also providing the
energy people need to be resilient to climate impacts.
But how vulnerable is thermal electricity production
itself to global warming?

Thermal power plants are reliant on air and
water to function: these plants use a fuel source

(e.g. fossil fuels, nuclear material) to generate steam
to drive an electric generator. In doing so, plants
produce large amounts of heat that must be dis-
sipated through air- or water-based cooling sys-
tems. There are three primary cooling system types:
(a) once-through cooling systems, where water is
drawn through the cooling system and then ejec-
ted into a river or stream; (b) recirculating water
cooling systems; and (c) dry cooling systems, which
do not use water. While these systems are oper-
ationally distinct, they all become less efficient at
higher ambient temperatures. When ambient air or
water temperatures are warm or when water avail-
ability is low [8], thermal power plants must cur-
tail their electricity output or shutdown due to their
inability to dissipate heat fast enough. Additionally,
local regulations limiting thermal pollution—often
meaning the temperature of rejected cooling water—
can force curtailment, although plants may request
thermal waivers to allow continued operation during
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droughts or heat waves [9]. However, heat-related
curtailment still occurs, and it is most likely on the
hottest days of the year, when electricity demand is
highest andwhen demand is expected to growmost in
the future due largely to expanding air conditioning
usage [10–13]. Recent heat waves have reduced power
generation capacity in Europe [14, 15], and a hotter
and drier future may make such curtailment events
more common, creating an imperative to compensate
for the resulting reduced electricity generation.

Prior work has highlighted the potential vulner-
ability of thermal and hydroelectric power genera-
tion to climate change [5, 15–21]. These studies use
combinations of climate, hydrological, and energy
system models to make their claims. However, such
model-derived results are difficult to replicate and
evaluate against real-world plant performance. At the
same time, observational data of daily-scale plant
operations is limited—particularly across a diversity
of power plant and cooling types—making much
needed empirical models a challenge to estimate.

Despite these challenges, there are some observa-
tions of daily-scale thermal power plant outages avail-
able for nuclear plants in the United States (U.S.)
and coal, gas, and oil plants in the European Union
(E.U.). Using these data, we are able to gain some
important insights about the real-world sensitivity
of plant capacity to extreme heat. Here we com-
pile all available daily-scale thermal power plant-level
curtailment data from the U.S. and E.U. and com-
bine those data with historical daily-scale temper-
ature and monthly-scale runoff to provide the first
observational evaluation of the sensitivity of thermal
power plant capacity to heat and water availability.
We explicitly control for plant characteristics includ-
ing age, fuel type, and cooling system, and implicitly
for location, background climate, and local regula-
tions. Finally, wemerge our observationalmodel with
projections of future electricity generation infrastruc-
ture growth forecasts to assess the cumulative effects
of curtailment over time in awarmingworld. Our res-
ults are the first to link observed climate impacts on
the electricity sector to both energy and climate policy
targets, demonstrating the pattern of risk of a con-
tinued reliance on fossil-fueled power: more warm-
ing, more electricity demand, and more generation
curtailment.

2. Data andmethods

We combine temperature and runoff data with daily-
scale power plant outage data and electricity demand
data to estimate the relationships between climate,
electricity generation, and electricity demand. We
limit our analysis to two summer months—July and
August—as these are generally the hottest (and often
driest) months of the year and outages occurring dur-
ing these months are likely to be unplanned. Center-
ing our analysis on July and August also allows us to

leverage the fact that during these months electricity
demand is highest and power plant outages are low-
est, meaning that outages that do occur are less likely
to be due to scheduled maintenance and more likely
to be due to plant overheating.

2.1. Temperature
Daily maximum temperatures from ERA-Interim
[22], CPC [23], and the NCEP II Reanalysis [24]
are obtained for every plant location to model cur-
tailment. To model subgrid-scale electricity demand,
these temperature data are averaged over each elec-
tricity subgrid region. Electricity subgrid regions are
defined as all states which are entirely or mostly
covered by a subgrid, as specified by the U.S. Energy
Information Administration (EIA) [25], and defined
in Section 2.3 ‘Electricity demand.’ When estimat-
ing curtailment and demand, we average the three
observed temperature datasets to create a best estim-
ate of the daily maximum temperature. The mean
correlation between the three daily temperature data-
sets across all nuclear power plant locations is 0.96 or
above.

2.2. Runoff
Daily scale runoff data come from the Global Run-
off Data Centre (GRDC), which cover the years
2007 through 2018 [26] at the majority of runoff
gauges. Runoff stations are selected based on whether
they fall within the same hydrologic basins as the
power plants (based on the Simulated Topological
Network-30p [27]). Runoff observations are available
for 49% of days across all plants for which outage
and temperature data are available. Despite the miss-
ing data, runoff is a significant predictor of power
plant outages (see Section 2.8 ‘Curtailment estima-
tion’ below). The best-fit distribution for each runoff
station is identified by calculating the sum of squared
errors (SSEs) after fitting each of 88 standard statist-
ical distributions and selecting the distribution with
the lowest SSE (see SI table 1 (available online at
stacks.iop.org/ERL/16/024043/mmedia) for a list of
best distributions for each runoff station). All run-
off data are smoothed using a 30-day moving average
to give an estimate of monthly-scale water availabil-
ity. Runoff anomalies for each station are calculated
for July and August by subtracting the July–August
mean runoff from each daily July–August value and
dividing by the July–August standard deviation as cal-
culated using the best-fit distribution for the station.
Runoff data is used to enable comparisonwithCMIP5
model projections.

2.3. Electricity demand
Hourly scale electricity demand data covering
2015–2018 is provided by the EIA for the following
U.S. subgrid operators: Electric Reliability Council
of Texas (ERCO; covers most of TX), Independent
System Operator New England (ISNE; covers CT,
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RI, MA, NH, VT, and ME), New York Independent
System Operator (NYIS; covers NY), PJM Intercon-
nection (PJM; covers OH, PA, NJ, MD, DC, VA, WV,
and a small part of IN), Southwest Power Pool (SWPP
covers OK, KS, NE, SD, parts of ND, and a small part
of northern TX), and California Independent System
Operator (CISO; covers most of CA) [25]. We only
analyze demand data from the U.S., but prior work
has found similar demand–temperature relationships
in the E.U. [13].

2.4. Electricity outages
Daily-scale outage data for 61 U.S. nuclear power sta-
tions from 2007 to 2018 is provided by the EIA (EIA-
860; average plant capacity available on each day).
Data describing outage events for 52 E.U. thermal
power plants between 2015 and 2018 is obtained from
the EuropeanNetwork of Transmission SystemOper-
ators for Electricity (ENTSOE) and ismergedwith the
U.S. outage data [28].

2.5. Climate models
Projections of daily maximum temperature (tasmax),
daily minimum temperature (tasmin), and monthly
total runoff (mrro) from 15 CMIP5 models are used.
All models use the r1i1p1 ensemble member, are run
under RCP 4.5 (strong mitigation, shown in figure 4)
and RCP 8.5 (worst case, shown in SI figure 1), and
cover 1981–2100. A list of models is shown in SI
table 2.

2.6. Global power plant data
We use power plant fuel type, capacity, and locations
provided in the Global Power Plant Database by the
World Resources Institute [29].

Using the available observational data and a mul-
tivariate regression analysis, we estimate the sensitiv-
ity of electricity demand to temperature for the U.S.
subgrids, as well as the sensitivity of electricity cur-
tailment to temperature and runoff at available U.S.
and E.U. power plant sites.

2.7. Demand estimation
The shape of the seasonal cycle of electricity demand
depends on income, air conditioner market penet-
ration, the use of electric heating, and atmospheric
temperatures [11]; in tropical climates or locations
with less air conditioning, these cycles would likely
be dampened, and they are reversed in the southern
hemisphere.

Demand anomalies are calculated for each U.S.
subgrid by subtracting the mean demand over the
dataset from each daily value. These demand anom-
alies are then normalized for each subgrid, allow-
ing for comparisons between subgrids of different
sizes and in different climates. Daily maximum tem-
peratures from ERA-Interim, CPC, and the NCEP
II Reanalysis are averaged over each subgrid region.
Then the three observed temperature datasets are

averaged to create a best estimate of the regional
daily maximum temperature. Finally, the dependence
of electricity demand on temperature presented in
figure 1(D) is modeled using a 2nd order nonlinear
regression defined as:

Ḋ∼ β0 +β1T+β2T
2 + ϵ

where T is the best-estimate daily maximum temper-
ature averaged over each subgrid and Ḋ is the pre-
dicted demand. This model form was selected as the
simplest nonlinear form, given the known nonlin-
ear relationship between temperature and electricity
demand [11, 12]. The model R2 is 0.56. Both the
linear and quadratic temperature terms are signific-
ant (p < 0.001). This model captures the temperat-
ure dependence of electricity demand due to both
the intensive (existing air conditioners being used
more) and extensive (more air conditioners being
purchased) margins [11].

2.8. Curtailment estimation
Daily plant operating capacity is calculated by sub-
tracting the outage from the maximum plant capa-
city and dividing by that maximum capacity. All daily
outages during the months of July and August are
included, when electricity demand is high and plants
are operating at near full capacity (figure 1(E)). Dur-
ing the summer, it is more likely that an outage will
be climate-related than during other parts of the year,
when more outages are planned. Each power plant
is linked with a best-estimate observationally-based
daily maximum temperature time series at the grid
cell nearest to the plant location. Each power plant is
matched with the GRDC runoff station closest to the
plant that also falls in the same hydrological basin as
the plant as defined by the STN-30p basin extent data-
set [27]. July–August runoff anomaly time series are
calculated for each selected runoff station as described
above in Section 2.2 ‘Runoff data’. Time series for each
plant are restricted to days when outage data, temper-
ature data, and runoff data are available. Daily plant
capacities are nonlinearly regressed against dailymax-
imum temperatures and daily runoff anomalies using
the following model:

.
PCi ∼ β0 +βi +βt +βage +βcool +βfuel +β1Ti

+β2Qi +β3T
2
i +β4Q

2
i + ε

where
.

PCi is the estimated plant capacity at each
plant, βi is a plant fixed effect, βt is a time fixed effect,
βage is a fixed effect categorizing plant construction
year (before 1980, 1980–1989, or after 1990), βcool
is a fixed effect specifying plant cooling system type
(once-through or recirculating), βfuel is a fixed effect
specifying the plant’s fuel type (nuclear, gas, coal, or
oil), Ti is the daily maximum temperature at each
plant, and Qi is the standardized daily runoff anom-
aly at each plant. The plant fixed effect accounts
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Figure 1. Climate and the electricity sector. (A) Power stations in the U.S. and the E.U. providing daily outage data. (B) Monthly
maximum temperature over the pre-industrial period (1850–1900, blue), in 1981–2018 (black) and projected under 2 ◦C
(orange) and 4 ◦C (red) warming scenarios. (C) Monthly mean runoff anomaly (in standard deviation (SD) from the historical
mean, based on the best-fit distribution for each runoff station, see Data and methods) over 1981–2018 (black) and projected
under 2 ◦C (orange) and 4 ◦C (red) warming scenarios. (D) Monthly maximum electricity demand over 1981–2018 (black line)
and projected under 2 ◦C (orange) and 4 ◦C (red) warming scenarios. (E) Mean power plant outage by month, as a percentage of
total plant capacity. Error bars show one SD across all plants (see Data and methods). Red bars indicate months of the year used
in our analysis. In (B)–(D), solid orange and red lines show the multi-model mean, and dashed lines show the highest (warmest
or driest) model from the CMIP5.

for variations in maximum generating capacity, geo-
graphic location, baseline climate, operating proced-
ures, and environmental policy, all of which may
affect the relationship between plant capacity, tem-
perature, and runoff. All model terms are significant
(p ⩽ 0.01), and regression coefficients and statistics
are presented in SI table 3.

This nonlinear model form was selected on
both theoretical and empirical grounds. First, the

efficiency of water-based cooling systems is expec-
ted to respond nonlinearly to temperature [30] due
to the nonlinear dependence of evaporation rate on
temperature. Second, the average adjusted R2 (across
1000 bootstrapped models) of this model form is
0.077, indicating that about 7.7% of daily variability
in plant capacity can be accounted for by temperat-
ure and runoff variability during July and August. A
model including only linear temperature and runoff
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variables had an average adjusted R2 of 0.073, sug-
gesting that the quadratic model is more appropriate.
Interaction terms were not included in the model as
they did not substantially change the model behavior
or adjusted R2 (0.078) but do make interpretation of
the model coefficients more complex. Data on which
the model is trained is presented in SI figure 6.

2.9. Curtailment projections
We use our empirically estimated curtailment model
to project global generation curtailment for differ-
ent levels of plant-specific warming using a four-fold
strategy: firstly, we bias-correct the climate model
data as described below; secondly, we estimate the
across-model distribution of daily temperatures and
corresponding monthly mean runoff values at plant
sites as a function of global mean warming; thirdly,
we estimate plant-level outages as a function of global
mean warming using our curtailment model and
the daily plant-level temperatures and monthly run-
off values from each climate model; and finally,
to propagate curtailments from the U.S.–E.U. scale
to the global-scale over the coming century, we
incorporate several scenarios of global energy sys-
tem change to assess how varying energy techno-
logy portfolios affect global-scale electricity produc-
tion curtailment with warming.

2.10. CMIP5 bias correction
To account for systematic temperature biases in the
CMIP5 models, we apply a decile-matching bias
correction procedure [31] at each power plant loc-
ation. First, we compute the mean temperature in
each decile of the historical temperature distribu-
tion at each power plant in both the best-estimate
observationally based temperature dataset (described
above in Section 2.7 ‘Demand estimation’) and in
each CMIP5 model. Next, the bias correction is com-
puted as:

Cd,m = Td,o −Td,m

where Cd,m is the bias correction for each decile, d,
and model, m, Td,o is the mean observationally based
temperature, o, for each decile, d, and Td,m is the
mean temperature for each decile and model in the
historical period. The bias correction is applied to
model projections as:

Tcorrday,d,m = Tuncorrday,d,m +Cd,m

where Tcorrd,m is a single corrected model temperature
for a day falling into decile d in the model’s distribu-
tion. See SI figure 7 for the results of this bias correc-
tion procedure.

2.11. Global mean temperature (GMT) change
Time periods with global mean temperature changes
near 1 ◦C, 2 ◦C, 3 ◦C, and 4 ◦Care extracted fromeach
model by selecting years by the following criteria:

W− 0.25◦C< GMTy −GMT1981−2005

+(GMTNCEP−20CR−1981−2005

−GMTNCEP−20CR−1850−1900)<W+ 0.25◦C

where W is the target level of global mean warming,
GMTy is the globally averaged temperature in each
climate model in year y; GMTNCEP−20CR−1981−2005

and GMTNCEP−20CR−1850−1900 are the globally aver-
aged temperatures as recorded in the NCEP 20th cen-
tury reanalysis [32] in the pre-industrial (1850–1900)
and the historical (1981–2005) periods, respectively;
and GMT1981−2005 is the globally averaged tem-
perature in each CMIP5 model in the historical
(1981–2005) period. The NCEP 20th century reana-
lysis is used to estimate the global mean temperat-
ure change that occurred between the pre-industrial
period (1850–1900) and the end of the CMIP5 histor-
ical runs (1981–2005).

2.12. Global power system scenarios
Four scenarios of global power system growth are
assessed. (a) Constant: the number, capacity, and loc-
ation of power plants remain the same as in 2018;
(b) 40 year lifespan: each power plant is assumed to
have a 40 year lifespan and allowed to retire 40 years
after its construction date. No new plants are con-
structed. (c) International Energy Agency (IEA) sus-
tainability: projections taken directly from the IEA
scenario through 2040. After 2040, the same rate
of global decline in thermal power plant capacity
as projected by the IEA between 2017 and 2040 is
applied to each global power plant, proportionally
to that plant’s capacity, until total thermal capacity
reaches zero near 2100. (d) IEA stated policies: pro-
jections taken directly from the IEA scenario through
2040. After 2040, the same rate of global increase
in thermal power plant capacity as projected by the
IEA between 2017 and 2040 is applied to each global
power plant, proportionally to that plant’s capacity,
through 2100.

2.13. Curtailment model projections
Curtailment is calculated at an hourly scale using his-
torical or modeled temperature and runoff. Monthly
and annual aggregate outages are calculated by using
the curtailment model to compute plant capacity for
every power plant in the U.S. and E.U. region in
2018. These computations are performed for each
hour in the historical period (1981–2005) and for
each hour in all selected years at each GMT warm-
ing level for each CMIP5 model. Hourly temper-
ature time series for each model are computed by
linearly interpolating between eachmodel-day’s min-
imum and maximum temperatures, and then each
hourly temperature is matched with the correspond-
ing monthly runoff anomaly. The plant outage per-
centage ismultiplied by the total plant capacity to give
outage in GW. This outage in GW is then multiplied
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by the time period to give an outage in TWh. The out-
ages are summed and divided by the total capacity of
all U.S.–E.U. plants to give the outage as a fraction of
the total U.S.–E.U. capacity in 2018.

Curtailment is computed for the four power sys-
tem scenarios defined above by calculating curtail-
ment at each global power plant in each year between
2020 and 2090 on the hottest day per year at each
plant. Curtailment is calculated using each CMIP5
climate model and each empirical curtailment estim-
ate (10th, 50th, 90th percentile), and the mean cur-
tailment across CMIP5 models is computed. Uncer-
tainty in climate outcomes can be represented by the
range of curtailment levels across CMIP5 models,
all run under RCP 4.5 [33]. We show this range in
figure 4(C) at the year 2040, which is the end point
of the IEA projections, and also a time when higher
and lower emissions scenarios have yet to significantly
diverge from each other.

The cost of curtailed generation is calculated by
multiplying a globally estimated levelized cost of elec-
tricity [34] of $0.1–$0.2 per kWh (in 2019 dollars) by
the 2080s aggregated curtailment under each energy
system scenario. The range in cost includes both the
range across levelized cost of electricity estimates and
the range in curtailment outcomes across CMIP5
models.

3. Results and discussion

Observed plant-specific air temperature and runoff
(figures 1(A)–(C)), electricity demand (figure 1(D),
derived from U.S. subgrids [25]), and plant outages
(figure 1(E)) are tightly coupled at all thermal power
plant sites with available daily-scale outage data
[28, 35] (figure 1(A)). In the U.S., electricity demand
peaks in boreal summer and winter due to energy
use for heating and cooling buildings [12, 13]. Power
plant outages in the U.S. and the E.U. (figure 1(E))
have a distinct seasonality that is inversely related to
electricity demand and temperature: most outages
are planned (e.g. for maintenance, or because their
capacity is unnecessary) and occur in the fall and
spring when electricity demand is lowest.

In the winter and particularly in the summer,
when electricity is needed most, outages are gen-
erally less than 5% to ensure peak demand is met
(figure 1(E)). Importantly,many grids overbuild their
electricity supply to ensure that it can meet this peak
demand [36]; however, this means there is consider-
ably less tolerance for unplanned outages during the
summer months, when temperatures are potentially
too high or water levels too low for effective plant
cooling. Because summertime electricity demand is
high, daily outages that occur in the summer are
mostly unplanned and may be related to weather or
technical problems—and, as we find, can be predicted
by daily air temperature and monthly-scale runoff.

Global mean temperature (GMT) projec-
tions of 2 ◦C and 4 ◦C above a 1850–1900 pre-
industrial reference amplify these present-day pat-
terns: plant-specific temperatures increase in all
months (figure 1(B)), while plant-specific warm sea-
son runoff decreases (figure 1(C)). The modeled sea-
sonal runoff peak shifts earlier in the spring in the
future, possibly due to earlier snowmelt and a shift
of precipitation type from snow to rain. Based on the
historical association between air temperature and
U.S. electricity demand, warming alone is sufficient
to increase peak electricity demand in the U.S. by
10–20 and 30–50 percentage points under 2 ◦C and
4 ◦C of warming, respectively (figure 1(D)). This rise
is in line with other recent estimates of the effect of
warming on electricity demand, is largely driven by
increased air conditioning use [11–13, 37–39], and
will necessitate new generation capacity, even absent
economic growth or population increases [37]. Fur-
thermore, electricity demand increases are likely to
be much larger in parts of the developing world,
particularly in the tropics, where climate change,
population growth, and rising incomes will con-
verge to drive widespread expansion in electricity
usage [11].

Beyond growing demand, warm temperatures
present a systemic risk to thermal power plants, par-
ticularly during times of peak electricity demand
(figure 2; raw data used in model fitting shown in SI
figure 6). Across all plants for which daily outage data
is available, electricity generation is maximized near
the present-day plant-specific average summertime
daily high air temperature (∼27 ◦C) and monthly
runoff anomaly (∼0 SD), suggesting that plants are
well-optimized for their historical mean climate con-
ditions. However, plant capacity in the U.S. and E.U.
declines nonlinearly at higher than average air tem-
peratures (figure 2(A)) and at lower (and higher) than
average runoff levels (figure 2(B)) during the sum-
mer months, explicitly accounting for plant cooling
system type (recirculating or once-through), plant
construction date, and individual plant characterist-
ics, including the local climate, geography, regula-
tions, and operating procedures (the effect of plant
cooling system type and construction date are shown
in SI figure 5). The cooccurrence of observed tem-
perature and runoff emphasizes that plant capacity
declines rapidly in temperature regardless of run-
off (figure 2(C)). Furthermore, the average annual
maximum daily temperature and mean summertime
runoff responses to global warming across all sites
(‘+’ signs in figure 2(C)), show that while plants are
optimized to the present climate, they are not to a
warmer future climate.

Our empirical estimate of curtailment’s associ-
ation with climate leverages the fact that summer-
time outages are generally unplanned (figure 1(E))
because electricity demand is highest on the hot-
test days when curtailment is most likely to occur.
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Figure 2. Observed relationship between plant-level curtailment and climate. (A) Bootstrapped estimates of the effect of daily
maximum temperature on power plant capacity, assuming climatological mean runoff anomalies. (B) Bootstrapped estimates of
the effect of daily runoff on power plant capacity, assuming climatological mean temperature. Distributions at the bottom of (A)
and (B) show observed daily maximum temperatures and runoff anomalies across all power plants used in the empirical model.
In (A) and (B), gray lines show 1000 bootstrapped regressions, and red, black, and blue lines show the 90th, 50th, and 10th
percentile bootstraps, respectively. (C) Relationship between temperature, runoff anomaly, and plant capacity averaged over
bootstrapped models. Black vertical and horizontal lines show the observed annual maximum temperature and summer mean
runoff values averaged over all plants (the horizontal and vertical lines show the runoff and temperature anomaly used in (A) and
(B), respectively). Stippling shows observed temperature–runoff combinations in the historical record. Size of each stipple
indicates the relative frequency of observations. Orange and red ‘+’ signs show the average annual maximum daily temperature
and the summer mean runoff anomaly averaged over all plants under 2 ◦C and 4 ◦C of warming, respectively.

Furthermore, our model directly considers the vari-
ation in plant cooling system (once-through or recir-
culating) and plant age, and it indirectly considers
geographic location and regulatory and enforcement
regimes through plant-specific fixed effects. Addi-
tionally, cooling requirements depend on a power
plant’s thermal efficiency, which varies more with
plant age than with plant fuel type [40], mean-
ing that the large number of nuclear plants in our
dataset is unlikely to significantly bias our estim-
ates of the temperature–curtailment relationship.
Together, these factors make our estimate of curtail-
ment extendable into the future and to thermal power
stations across the world (figures 3 and 4). How-
ever, because newer gas combined cycle power plants
require less cooling than other thermal plants and are
becoming more common [41], heat-related curtail-
ment at these plantsmay be less than estimated by our
model. At the same time, solar photovoltaic and con-
centrated solar power (CSP) plants are also subject to
heat-related efficiency loss, and these losses are not
accounted for in our analysis, potentially increasing
the overall risk of reduced electricity generation due
to warming.

Future climate warming increases U.S.–E.U.
thermal power plant curtailment, creating an elec-
tricity supply gap that will need to be filled by addi-
tional (and unaccounted for [15]) electricity produc-
tion. With warming, plant capacity on the hottest
summer day across all U.S.–E.U. thermal power
plants falls by a mean projection of 2.0 percentage
points under 2 ◦C of global warming and 3.1 per-
centage points under 4 ◦C of warming (figure 3(A)).
These results are in line with region-specific stud-
ies that use power plant modeling approaches to
estimate climate change impacts on thermal plants
[5, 15, 16, 20]. While the acute effects of curtailment

on grid stability will be felt at the hourly scale, eco-
nomic losses to power plants will be aggregated over
the year; accordingly, we show the accumulation of
estimated heat-related curtailment across the year.
In summer, our empirical model projects monthly
aggregated curtailment increasing by 100%–300%
under 2 ◦C and 4 ◦C of warming, respectively, res-
ulting in a total loss of 0.6%–1.5% (across warming
scenarios and bootstrapped curtailment models) of
total U.S.–E.U. thermal generating capacity in July–
August (figures 3(B) and (C)). This percentage loss is
not dependent on installed capacity: the total capacity
(in GW) that is curtailed will increase in the future as
global installed capacity grows.

We apply our empirical curtailment model to all
global thermal power plants using plant data from
the World Resources Institute [29], bias-corrected
climate projections from the CMIP5 ensemble, and
four scenarios of future energy system development
including two from the IEA, ranging from a rapid
phase-out of thermal power plants to their contin-
ued growth (figures 4(A)–(C)). The mix of electricity
generation technologies deployed globally strongly
determines the extent and costs of future curtailment
(figure 4(D)). Because data on global power plant
cooling systems is not available, we test the sensitiv-
ity of our projections to cooling system type by run-
ning our model once assuming all plants have once-
through cooling and again assuming all plants have
recirculating cooling (figure 4(D)), finding that recir-
culating systems result in about 25 TWh more annu-
ally averaged curtailment in the 2080s. While power
plant economics are complex and depend on elec-
tricity prices, construction, and operating costs, we
present a simple estimate of potential global losses
due to heat-related curtailment. Using a levelized cost
of electricity ranging from $0.10 to $0.20 per kWh
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Figure 3. Effect of curtailment on plant outages under warming. (A) Mean plant capacity loss across 113 U.S. and E.U. thermal
plants on the hottest day of each month in the historical period (1981–2018) and under 2 ◦C and 4 ◦C of warming above a
pre-industrial reference period (1850–1900), shown in black, yellow, and red, respectively. U.S. electricity demand anomaly in
percent deviation from the annual mean is shown above panel (A). (B) Total accumulated outage in each month, shown in
terawatt hours (TWh) (left y-axis) and as a percent of the 2018 total U.S.–E.U. thermal generating capacity (right y-axis).
(C) Accumulated outage over the year, shown in TWh (left y-axis) and as a percent of the 2018 total U.S.–E.U. thermal generating
capacity (right y-axis). In (A)–(C) solid lines show the multi-model mean, and dashed lines show the warmest model. All results
are shown using the bootstrapped 50th percentile curtailment model.

[34], projected aggregated curtailment translates into
lost revenue of up to $47 billion per year by the end
of the century under the IEA stated policies scenario,
where thermal plant capacity continues to increase,
versus $1 billion per year should the world follow
the IEA sustainability scenario and mostly phase out
thermal power production by 2100.

While regulatory and technology changes could
modify the fundamental relationship between tem-
perature and thermal power generation capacity,
many existing power plants will operate for decades as
the climate warms [6], making it important to under-
stand the drivers of uncertainty in climate-related
curtailment. Three factors dominate this uncer-
tainty: observed empirical model uncertainty (across
bootstrapped estimates, accounting for technology,
geography, operating procedures, and regulation),
warming uncertainty (across climate models in the
same emissions scenario), and the trajectory of the
power system’s fuel mix (across energy system scen-
arios). By the end of the century, the energy system
scenario is the largest contributor to uncertainty in
curtailment projections as it determines the num-
ber of thermal power plants at which curtailment

might be necessary. Furthermore, several factors will
affect future curtailment that are not accounted for
here. First, power system trajectories and warming
are linked. Under a scenario where thermal power
plants are rapidly decommissioned, there will likely
be less warming than if thermal generating capacity
continues to grow, dampening curtailment. Second,
our model considers the average response across
plants; as such individual plants could be more or
less impacted by heat extremes than the ones provid-
ing daily outage data. Third, there is substantial
uncertainty in the runoff projections generated by
CMIP5 models. Plant-specific runoff could evolve
differently than the models suggest due to land use
change, climate change, and the relatively simple run-
off modeling schemes in current Earth systemmodels
[42, 43]. Additionally, in a warmer and drier climate,
thermal power plants may be modified to more effi-
ciently recirculate cooling water or find alternative
water sources in times of drought [17], reducing heat-
related curtailment.

Importantly, there is uncertainty about how
power plants operating in different climates, and with
different fuel types, cooling systems, capacities, and
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Figure 4. Curtailment under future energy development scenarios. (A) Thermal power generation capacity over time, and under
four future scenarios of technology change: a 40 year plant lifespan with no new construction (green), constant capacity over time
(gray), the IEA sustainability scenario (blue), and the IEA stated policies scenario (red). IEA scenarios are defined until 2040.
Dashed red, gray, and blue lines indicate an extrapolation of each scenario assuming a steady rate of capacity change. Black marker
indicates IEA defined thermal generation capacity in 2018. Green shaded area indicates total generating capacity in each year
assuming each plant has a 40 year lifespan, with plant construction dates taken from the WRI Power Plant Database [29]. Vertical
black dashed lines indicate the multi-model mean year in which each global mean warming threshold (relative to 1850–1900) is
reached under RCP 4.5 (for models that do eventually reach each threshold before 2100; many models do not reach 3 ◦C or 4 ◦C
under RCP 4.5). (B) IEA stated policies (top) and sustainability (bottom) scenarios broken down by estimated generation
capacity by fuel type. (C) Global curtailment projections on the hottest day of the year in the historical period (black; error bars
denote 10th–90th percentile curtailment models) and under each of the four future scenarios defined in (A). Climate projections
follow RCP 4.5 (see SI figure 1 for results under RCP 8.5). Shaded regions show the range between curtailment projections using
the 10th percentile model and the 90th percentile model. Horizontal dashed lines indicate the multi-model mean curtailment in
2040. Error bars indicate the range of curtailment projections in 2040 across CMIP5 climate models. (D) Globally, annually
aggregated curtailment during the 2080s using the bootstrapped 50th percentile curtailment model. Results shown for model
runs where all global plants use once-through cooling (crosses) or recirculating cooling (circles). Horizontal lines shows the
average curtailment across cooling systems. Error bars show the range across CMIP5 models. Dollar amounts denote lost revenue
per year due to curtailment assuming a globally averaged levelized cost of electricity ranging from $0.1 to 0.2 kWh−1.

regulatory regimes, will vary in their response to
high temperatures. Because daily-scale power plant
outage data is very limited, we estimate this rela-
tionship using all available data, which primarily
comes from U.S. nuclear plants and some coal, oil,
and gas plants from the E.U. This dataset samples a
wide range of power plant capacities across differ-
ent climates. However, this limited data may over-
or under-estimate the global consequences of heat-
related curtailment. Notably, there is no available data
from developing countries where most future power
plant construction will take place. Accordingly, our
analysis—and our understanding of climate change
impacts on the energy sector—could be expanded

and our projections improved by additional daily- or
sub-daily-scale power plant outage data availability
from a diverse set of power plants across the world.

Our results suggest that thermal power plant cur-
tailment could have substantial impacts on global
electricity generation capacity during the hottest
parts of the year, necessitating additional overbuild-
ing of the global electricity system by up to 1%–7%
given the current generating technology mix. At the
same time, the magnitude of this impact depends on
our adaptation decisions: if we rapidly transition the
electricity sector to non-thermal power sources like
solar and wind, curtailment can be greatly reduced,
although hydropower may face substantial future risk
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from reduced streamflow [17]. Our results highlight
the double benefit from non-thermal electricity gen-
eration in a warmer world: less curtailment and fewer
emissions.
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